

 Navigation

 	
 index

 	
 next |

 	An Introduction to libuv

Table of Contents

	Introduction
	Who this book is for

	Background

	Code

	Basics of libuv
	Event loops

	Hello World

	Watchers

	Filesystem
	Reading/Writing files

	Filesystem operations

	Buffers and Streams

	File change events

	Networking
	TCP

	UDP

	Querying DNS

	Network interfaces

	Threads
	Core thread operations

	Synchronization Primitives

	libuv work queue

	Inter-thread communication

	Processes
	Spawning child processes

	Changing process parameters

	Detaching processes

	Sending signals to processes

	Signals

	Child Process I/O

	Pipes

	Multiple event loops
	Modality

	One loop per thread

	Utilities
	Timers

	Event loop reference count

	Idle watcher pattern

	Passing data to worker thread

	External I/O with polling

	Check & Prepare watchers

	Loading libraries

	TTY

	About
	Licensing

Alternate formats

The book is also available in:

	
PDF

	
ePub

 Copyright 2012, Nikhil Marathe.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	An Introduction to libuv

Introduction

This ‘book’ is a small set of tutorials about using libuv [https://github.com/joyent/libuv] as
a high performance evented I/O library which offers the same API on Windows and Unix.

It is meant to cover the main areas of libuv, but is not a comprehensive
reference discussing every function and data structure. The official libuv
documentation [https://github.com/joyent/libuv/blob/master/include/uv.h] is included directly in the libuv header file.

This book is still a work in progress, so sections may be incomplete, but
I hope you will enjoy it as it grows.

Who this book is for

If you are reading this book, you are either:

	a systems programmer, creating low-level programs such as daemons or network
services and clients. You have found that the event loop approach is well
suited for your application and decided to use libuv.

	a node.js module writer, who wants to wrap platform APIs
written in C or C++ with a set of (a)synchronous APIs that are exposed to
JavaScript. You will use libuv purely in the context of node.js. For
this you will require some other resources as the book does not cover parts
specific to v8/node.js.

This book assumes that you are comfortable with the C programming language.

Background

The node.js [http://www.nodejs.org] project began in 2009 as a JavaScript environment decoupled
from the browser. Using Google’s V8 [http://code.google.com/p/v8/] and Marc Lehmann’s libev [http://software.schmorp.de/pkg/libev.html], node.js
combined a model of I/O – evented – with a language that was well suited to
the style of programming; due to the way it had been shaped by browsers. As
node.js grew in popularity, it was important to make it work on Windows, but
libev ran only on Unix. The Windows equivalent of kernel event notification
mechanisms like kqueue or (e)poll is IOCP. libuv is an abstraction around libev
or IOCP depending on the platform, providing users an API based on libev.
As of the node-v0.9.0 version of libuv, libev has been removed [https://github.com/joyent/libuv/issues/485] and libuv
directly interfaces with Unix.

Code

All the code from this book is included as part of the source of the book on
Github. Clone [https://github.com/nikhilm/uvbook]/Download [https://github.com/nikhilm/uvbook/downloads] the book and run make in the code/
folder to compile all the examples. This book and the code is based on libuv
version node-v0.9.8 [https://github.com/joyent/libuv/tags] and a version is included in the libuv/ folder
which will be compiled automatically.

 Copyright 2012, Nikhil Marathe.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	An Introduction to libuv

Basics of libuv

libuv enforces an asynchronous, event-driven style of programming. Its
core job is to provide an event loop and callback based notifications of I/O
and other activities. libuv offers core utilities like timers, non-blocking
networking support, asynchronous file system access, child processes and more.

Event loops

In event-driven programming, an application expresses interest in certain events
and respond to them when they occur. The responsibility of gathering events
from the operating system or monitoring other sources of events is handled by
libuv, and the user can register callbacks to be invoked when an event occurs.
The event-loop usually keeps running forever. In pseudocode:

while there are still events to process:
 e = get the next event
 if there is a callback associated with e:
 call the callback

Some examples of events are:

	File is ready for writing

	A socket has data ready to be read

	A timer has timed out

This event loop is encapsulated by uv_run() – the end-all function when using
libuv.

The most common activity of systems programs is to deal with input and output,
rather than a lot of number-crunching. The problem with using conventional
input/output functions (read, fprintf, etc.) is that they are
blocking. The actual write to a hard disk or reading from a network, takes
a disproportionately long time compared to the speed of the processor. The
functions don’t return until the task is done, so that your program is doing
nothing. For programs which require high performance this is a major roadblock
as other activities and other I/O operations are kept waiting.

One of the standard solutions is to use threads. Each blocking I/O operation is
started in a separate thread (or in a thread pool). When the blocking function
gets invoked in the thread, the processor can schedule another thread to run,
which actually needs the CPU.

The approach followed by libuv uses another style, which is the asynchronous,
non-blocking style. Most modern operating systems provide event notification
subsystems. For example, a normal read call on a socket would block until
the sender actually sent something. Instead, the application can request the
operating system to watch the socket and put an event notification in the
queue. The application can inspect the events at its convenience (perhaps doing
some number crunching before to use the processor to the maximum) and grab the
data. It is asynchronous because the application expressed interest at one
point, then used the data at another point (in time and space). It is
non-blocking because the application process was free to do other tasks.
This fits in well with libuv’s event-loop approach, since the operating system
events can be treated as just another libuv event. The non-blocking ensures
that other events can continue to be handled as fast they come in [1].

Note

How the I/O is run in the background is not of our concern, but due to the
way our computer hardware works, with the thread as the basic unit of the
processor, libuv and OSes will usually run background/worker threads and/or
polling to perform tasks in a non-blocking manner.

Bert Belder, one of the libuv core developers has a small video explaining the
architecture of libuv and its background. If you have no prior experience with
either libuv or libev, it is a quick, useful watch.

 Filesystem

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	An Introduction to libuv

Filesystem

Simple filesystem read/write is achieved using the uv_fs_* functions and the
uv_fs_t struct.

Note

The libuv filesystem operations are different from socket operations. Socket operations use the non-blocking operations provided
by the operating system. Filesystem operations use blocking functions
internally, but invoke these functions in a thread pool and notify watchers
registered with the event loop when application interaction is required.

All filesystem functions have two forms - synchronous and asynchronous.

The synchronous forms automatically get called (and block) if no callback
is specified. The return value of functions is the equivalent Unix return value
(usually 0 on success, -1 on error).

The asynchronous form is called when a callback is passed and the return
value is 0.

Reading/Writing files

A file descriptor is obtained using

int uv_fs_open(uv_loop_t* loop, uv_fs_t* req, const char* path, int flags, int mode, uv_fs_cb cb)

flags and mode are standard
Unix flags [http://man7.org/linux/man-pages/man2/open.2.html].
libuv takes care of converting to the appropriate Windows flags.

File descriptors are closed using

int uv_fs_close(uv_loop_t* loop, uv_fs_t* req, uv_file file, uv_fs_cb cb)

Filesystem operation callbacks have the signature:

void callback(uv_fs_t* req);

Let’s see a simple implementation of cat. We start with registering
a callback for when the file is opened:

uvcat/main.c - opening a file

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10

	void on_open(uv_fs_t *req) {
 if (req->result != -1) {
 uv_fs_read(uv_default_loop(), &read_req, req->result,
 buffer, sizeof(buffer), -1, on_read);
 }
 else {
 fprintf(stderr, "error opening file: %d\n", req->errorno);
 }
 uv_fs_req_cleanup(req);
}

The result field of a uv_fs_t is the file descriptor in case of the
uv_fs_open callback. If the file is successfully opened, we start reading it.

Warning

The uv_fs_req_cleanup() function must be called to free internal memory
allocations in libuv.

uvcat/main.c - read callback

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

	void on_read(uv_fs_t *req) {
 uv_fs_req_cleanup(req);
 if (req->result < 0) {
 fprintf(stderr, "Read error: %s\n", uv_strerror(uv_last_error(uv_default_loop())));
 }
 else if (req->result == 0) {
 uv_fs_t close_req;
 // synchronous
 uv_fs_close(uv_default_loop(), &close_req, open_req.result, NULL);
 }
 else {
 uv_fs_write(uv_default_loop(), &write_req, 1, buffer, req->result, -1, on_write);
 }
}

In the case of a read call, you should pass an initialized buffer which will
be filled with data before the read callback is triggered.

In the read callback the result field is 0 for EOF, -1 for error and the
number of bytes read on success.

Here you see a common pattern when writing asynchronous programs. The
uv_fs_close() call is performed synchronously. Usually tasks which are
one-off, or are done as part of the startup or shutdown stage are performed
synchronously, since we are interested in fast I/O when the program is going
about its primary task and dealing with multiple I/O sources. For solo tasks
the performance difference usually is negligible and may lead to simpler code.

We can generalize the pattern that the actual return value of the original
system call is stored in uv_fs_t.result.

Filesystem writing is similarly simple using uv_fs_write(). Your callback
will be triggered after the write is complete. In our case the callback
simply drives the next read. Thus read and write proceed in lockstep via
callbacks.

uvcat/main.c - write callback

	1
2
3
4
5
6
7
8
9

	void on_write(uv_fs_t *req) {
 uv_fs_req_cleanup(req);
 if (req->result < 0) {
 fprintf(stderr, "Write error: %s\n", uv_strerror(uv_last_error(uv_default_loop())));
 }
 else {
 uv_fs_read(uv_default_loop(), &read_req, open_req.result, buffer, sizeof(buffer), -1, on_read);
 }
}

Note

The error usually stored in errno [http://man7.org/linux/man-pages/man3/errno.3.html] can be accessed from
uv_fs_t.errorno, but converted to a standard UV_* error code. There is
currently no way to directly extract a string error message from the
errorno field.

Warning

Due to the way filesystems and disk drives are configured for performance,
a write that ‘succeeds’ may not be committed to disk yet. See
uv_fs_fsync for stronger guarantees.

We set the dominos rolling in main():

uvcat/main.c

	1
2
3
4
5

	int main(int argc, char **argv) {
 uv_fs_open(uv_default_loop(), &open_req, argv[1], O_RDONLY, 0, on_open);
 uv_run(uv_default_loop(), UV_RUN_DEFAULT);
 return 0;
}

Filesystem operations

All the standard filesystem operations like unlink, rmdir, stat are
supported asynchronously and have intuitive argument order. They follow the
same patterns as the read/write/open calls, returning the result in the
uv_fs_t.result field. The full list:

Filesystem operations

UV_EXTERN int uv_fs_close(uv_loop_t* loop, uv_fs_t* req, uv_file file,
 uv_fs_cb cb);

UV_EXTERN int uv_fs_open(uv_loop_t* loop, uv_fs_t* req, const char* path,
 int flags, int mode, uv_fs_cb cb);

UV_EXTERN int uv_fs_read(uv_loop_t* loop, uv_fs_t* req, uv_file file,
 void* buf, size_t length, int64_t offset, uv_fs_cb cb);

UV_EXTERN int uv_fs_unlink(uv_loop_t* loop, uv_fs_t* req, const char* path,
 uv_fs_cb cb);

UV_EXTERN int uv_fs_write(uv_loop_t* loop, uv_fs_t* req, uv_file file,
 void* buf, size_t length, int64_t offset, uv_fs_cb cb);

UV_EXTERN int uv_fs_mkdir(uv_loop_t* loop, uv_fs_t* req, const char* path,
 int mode, uv_fs_cb cb);

UV_EXTERN int uv_fs_rmdir(uv_loop_t* loop, uv_fs_t* req, const char* path,
 uv_fs_cb cb);

UV_EXTERN int uv_fs_readdir(uv_loop_t* loop, uv_fs_t* req,
 const char* path, int flags, uv_fs_cb cb);

UV_EXTERN int uv_fs_stat(uv_loop_t* loop, uv_fs_t* req, const char* path,
 uv_fs_cb cb);

UV_EXTERN int uv_fs_fstat(uv_loop_t* loop, uv_fs_t* req, uv_file file,
 uv_fs_cb cb);

UV_EXTERN int uv_fs_rename(uv_loop_t* loop, uv_fs_t* req, const char* path,
 const char* new_path, uv_fs_cb cb);

UV_EXTERN int uv_fs_fsync(uv_loop_t* loop, uv_fs_t* req, uv_file file,
 uv_fs_cb cb);

UV_EXTERN int uv_fs_fdatasync(uv_loop_t* loop, uv_fs_t* req, uv_file file,
 uv_fs_cb cb);

UV_EXTERN int uv_fs_ftruncate(uv_loop_t* loop, uv_fs_t* req, uv_file file,
 int64_t offset, uv_fs_cb cb);

UV_EXTERN int uv_fs_sendfile(uv_loop_t* loop, uv_fs_t* req, uv_file out_fd,
 uv_file in_fd, int64_t in_offset, size_t length, uv_fs_cb cb);

UV_EXTERN int uv_fs_chmod(uv_loop_t* loop, uv_fs_t* req, const char* path,
 int mode, uv_fs_cb cb);

UV_EXTERN int uv_fs_utime(uv_loop_t* loop, uv_fs_t* req, const char* path,
 double atime, double mtime, uv_fs_cb cb);

UV_EXTERN int uv_fs_futime(uv_loop_t* loop, uv_fs_t* req, uv_file file,
 double atime, double mtime, uv_fs_cb cb);

UV_EXTERN int uv_fs_lstat(uv_loop_t* loop, uv_fs_t* req, const char* path,
 uv_fs_cb cb);

UV_EXTERN int uv_fs_link(uv_loop_t* loop, uv_fs_t* req, const char* path,
 const char* new_path, uv_fs_cb cb);

Callbacks should free the uv_fs_t argument using uv_fs_req_cleanup().

Buffers and Streams

The basic I/O tool in libuv is the stream (uv_stream_t). TCP sockets, UDP
sockets, and pipes for file I/O and IPC are all treated as stream subclasses.

Streams are initialized using custom functions for each subclass, then operated
upon using

int uv_read_start(uv_stream_t*, uv_alloc_cb alloc_cb, uv_read_cb read_cb);
int uv_read_stop(uv_stream_t*);
int uv_write(uv_write_t* req, uv_stream_t* handle,
 uv_buf_t bufs[], int bufcnt, uv_write_cb cb);

The stream based functions are simpler to use than the filesystem ones and
libuv will automatically keep reading from a stream when uv_read_start() is
called once, until uv_read_stop() is called.

The discrete unit of data is the buffer – uv_buf_t. This is simply
a collection of a pointer to bytes (uv_buf_t.base) and the length
(uv_buf_t.len). The uv_buf_t is lightweight and passed around by value.
What does require management is the actual bytes, which have to be allocated
and freed by the application.

To demonstrate streams we will need to use uv_pipe_t. This allows streaming
local files [2]. Here is a simple tee utility using libuv. Doing all operations
asynchronously shows the power of evented I/O. The two writes won’t block each
other, but we’ve to be careful to copy over the buffer data to ensure we don’t
free a buffer until it has been written.

The program is to be executed as:

./uvtee <output_file>

We start of opening pipes on the files we require. libuv pipes to a file are
opened as bidirectional by default.

uvtee/main.c - read on pipes

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19

	int main(int argc, char **argv) {
 loop = uv_default_loop();

 uv_pipe_init(loop, &stdin_pipe, 0);
 uv_pipe_open(&stdin_pipe, 0);

 uv_pipe_init(loop, &stdout_pipe, 0);
 uv_pipe_open(&stdout_pipe, 1);

 uv_fs_t file_req;
 int fd = uv_fs_open(loop, &file_req, argv[1], O_CREAT | O_RDWR, 0644, NULL);
 uv_pipe_init(loop, &file_pipe, 0);
 uv_pipe_open(&file_pipe, fd);

 uv_read_start((uv_stream_t*)&stdin_pipe, alloc_buffer, read_stdin);

 uv_run(loop, UV_RUN_DEFAULT);
 return 0;
}

The third argument of uv_pipe_init() should be set to 1 for IPC using named
pipes. This is covered in Processes. The uv_pipe_open() call
associates the file descriptor with the file.

We start monitoring stdin. The alloc_buffer callback is invoked as new
buffers are required to hold incoming data. read_stdin will be called with
these buffers.

uvtee/main.c - reading buffers

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21

	uv_buf_t alloc_buffer(uv_handle_t *handle, size_t suggested_size) {
 return uv_buf_init((char*) malloc(suggested_size), suggested_size);
}

void read_stdin(uv_stream_t *stream, ssize_t nread, uv_buf_t buf) {
 if (nread == -1) {
 if (uv_last_error(loop).code == UV_EOF) {
 uv_close((uv_handle_t*)&stdin_pipe, NULL);
 uv_close((uv_handle_t*)&stdout_pipe, NULL);
 uv_close((uv_handle_t*)&file_pipe, NULL);
 }
 }
 else {
 if (nread > 0) {
 write_data((uv_stream_t*)&stdout_pipe, nread, buf, on_stdout_write);
 write_data((uv_stream_t*)&file_pipe, nread, buf, on_file_write);
 }
 }
 if (buf.base)
 free(buf.base);
}

The standard malloc is sufficient here, but you can use any memory allocation
scheme. For example, node.js uses its own slab allocator which associates
buffers with V8 objects.

The read callback nread parameter is -1 on any error. This error might be
EOF, in which case we close all the streams, using the generic close function
uv_close() which deals with the handle based on its internal type.
Otherwise nread is a non-negative number and we can attempt to write that
many bytes to the output streams. Finally remember that buffer allocation and
deallocation is application responsibility, so we free the data.

uvtee/main.c - Write to pipe

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

	typedef struct {
 uv_write_t req;
 uv_buf_t buf;
} write_req_t;

void free_write_req(uv_write_t *req) {
 write_req_t *wr = (write_req_t*) req;
 free(wr->buf.base);
 free(wr);
}

void on_stdout_write(uv_write_t *req, int status) {
 free_write_req(req);
}

void on_file_write(uv_write_t *req, int status) {
 free_write_req(req);
}

void write_data(uv_stream_t *dest, size_t size, uv_buf_t buf, uv_write_cb callback) {
 write_req_t *req = (write_req_t*) malloc(sizeof(write_req_t));
 req->buf = uv_buf_init((char*) malloc(size), size);
 memcpy(req->buf.base, buf.base, size);
 uv_write((uv_write_t*) req, (uv_stream_t*)dest, &req->buf, 1, callback);
}

write_data() makes a copy of the buffer obtained from read. Again, this
buffer does not get passed through to the callback trigged on write completion.
To get around this we wrap a write request and a buffer in write_req_t and
unwrap it in the callbacks.

Warning

If your program is meant to be used with other programs it may knowingly or
unknowingly be writing to a pipe. This makes it susceptible to aborting on
receiving a SIGPIPE [http://pod.tst.eu/http://cvs.schmorp.de/libev/ev.pod#The_special_problem_of_SIGPIPE]. It is a good idea to insert:

signal(SIGPIPE, SIG_IGN)

in the initialization stages of your application.

File change events

All modern operating systems provide APIs to put watches on individual files or
directories and be informed when the files are modified. libuv wraps common
file change notification libraries [1]. This is one of the more
inconsistent parts of libuv. File change notification systems are themselves
extremely varied across platforms so getting everything working everywhere is
difficult. To demonstrate, I’m going to build a simple utility which runs
a command whenever any of the watched files change:

./onchange <command> <file1> [file2] ...

The file change notification is started using uv_fs_event_init():

onchange/main.c - The setup

	1
2
3
4

	 while (argc-- > 2) {
 fprintf(stderr, "Adding watch on %s\n", argv[argc]);
 uv_fs_event_init(loop, (uv_fs_event_t*) malloc(sizeof(uv_fs_event_t)), argv[argc], run_command, 0);
 }

The third argument is the actual file or directory to monitor. The last
argument, flags, can be:

 UV_FS_EVENT_WATCH_ENTRY = 1,
 UV_FS_EVENT_STAT = 2,
 UV_FS_EVENT_RECURSIVE = 3

UV_FS_EVENT_WATCH_ENTRY and UV_FS_EVENT_STAT don’t do anything (yet).
UV_FS_EVENT_RECURSIVE will start watching subdirectories as well on
supported platforms.

The callback will receive the following arguments:

	uv_fs_event_t *handle - The watcher. The filename field of the watcher
is the file on which the watch was set.

	const char *filename - If a directory is being monitored, this is the
file which was changed. Only non-null on Linux and Windows. May be null
even on those platforms.

	int flags - one of UV_RENAME or UV_CHANGE.

	int status - Currently 0.

In our example we simply print the arguments and run the command using
system().

onchange/main.c - file change notification callback

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10

	void run_command(uv_fs_event_t *handle, const char *filename, int events, int status) {
 fprintf(stderr, "Change detected in %s: ", handle->filename);
 if (events == UV_RENAME)
 fprintf(stderr, "renamed");
 if (events == UV_CHANGE)
 fprintf(stderr, "changed");

 fprintf(stderr, " %s\n", filename ? filename : "");
 system(command);
}

	[1]	inotify on Linux, FSEvents on Darwin, kqueue on BSDs,
ReadDirectoryChangesW on Windows, event ports on Solaris, unsupported on Cygwin

	[2]	see Pipes

 Copyright 2012, Nikhil Marathe.
 Created using Sphinx 1.1.3.

 Networking

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	An Introduction to libuv

Networking

Networking in libuv is not much different from directly using the BSD socket
interface, some things are easier, all are non-blocking, but the concepts stay
the same. In addition libuv offers utility functions to abstract the annoying,
repetitive and low-level tasks like setting up sockets using the BSD socket
structures, DNS lookup, and tweaking various socket parameters.

The uv_tcp_t and uv_udp_t structures are used for network I/O.

TCP

TCP is a connection oriented, stream protocol and is therefore based on the
libuv streams infrastructure.

Server

Server sockets proceed by:

	uv_tcp_init the TCP watcher.

	uv_tcp_bind it.

	Call uv_listen on the watcher to have a callback invoked whenever a new
connection is established by a client.

	Use uv_accept to accept the connection.

	Use stream operations to communicate with the
client.

Here is a simple echo server

tcp-echo-server/main.c - The listen socket

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

	int main() {
 loop = uv_default_loop();

 uv_tcp_t server;
 uv_tcp_init(loop, &server);

 struct sockaddr_in bind_addr = uv_ip4_addr("0.0.0.0", 7000);
 uv_tcp_bind(&server, bind_addr);
 int r = uv_listen((uv_stream_t*) &server, 128, on_new_connection);
 if (r) {
 fprintf(stderr, "Listen error %s\n", uv_err_name(uv_last_error(loop)));
 return 1;
 }
 return uv_run(loop, UV_RUN_DEFAULT);
}

You can see the utility function uv_ip4_addr being used to convert from
a human readable IP address, port pair to the sockaddr_in structure required by
the BSD socket APIs. The reverse can be obtained using uv_ip4_name.

Note

In case it wasn’t obvious there are uv_ip6_* analogues for the ip4
functions.

Most of the setup functions are normal functions since its all CPU-bound.
uv_listen is where we return to libuv’s callback style. The second
arguments is the backlog queue – the maximum length of queued connections.

When a connection is initiated by clients, the callback is required to set up
a watcher for the client socket and associate the watcher using uv_accept.
In this case we also establish interest in reading from this stream.

tcp-echo-server/main.c - Accepting the client

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

	void on_new_connection(uv_stream_t *server, int status) {
 if (status == -1) {
 // error!
 return;
 }

 uv_tcp_t *client = (uv_tcp_t*) malloc(sizeof(uv_tcp_t));
 uv_tcp_init(loop, client);
 if (uv_accept(server, (uv_stream_t*) client) == 0) {
 uv_read_start((uv_stream_t*) client, alloc_buffer, echo_read);
 }
 else {
 uv_close((uv_handle_t*) client, NULL);
 }
}

The remaining set of functions is very similar to the streams example and can
be found in the code. Just remember to call uv_close when the socket isn’t
required. This can be done even in the uv_listen callback if you are not
interested in accepting the connection.

Client

Where you do bind/listen/accept, on the client side its simply a matter of
calling uv_tcp_connect. The same uv_connect_cb style callback of
uv_listen is used by uv_tcp_connect. Try:

uv_tcp_t socket;
uv_tcp_init(loop, &socket);

uv_connect_t connect;

struct sockaddr_in dest = uv_ip4_addr("127.0.0.1", 80);

uv_tcp_connect(&connect, &socket, dest, on_connect);

where on_connect will be called after the connection is established.

UDP

The User Datagram Protocol [http://en.wikipedia.org/wiki/User_Datagram_Protocol] offers connectionless, unreliable network
communication. Hence libuv doesn’t offer a stream. Instead libuv provides
non-blocking UDP support via the uv_udp_t (for receiving) and uv_udp_send_t
(for sending) structures and related functions. That said, the actual API for
reading/writing is very similar to normal stream reads. To look at how UDP can
be used, the example shows the first stage of obtaining an IP address from
a DHCP [http://tools.ietf.org/html/rfc2131] server – DHCP Discover.

Note

You will have to run udp-dhcp as root since it uses well known port
numbers below 1024.

udp-dhcp/main.c - Setup and send UDP packets

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

	uv_loop_t *loop;
uv_udp_t send_socket;
uv_udp_t recv_socket;

int main() {
 loop = uv_default_loop();

 uv_udp_init(loop, &recv_socket);
 struct sockaddr_in recv_addr = uv_ip4_addr("0.0.0.0", 68);
 uv_udp_bind(&recv_socket, recv_addr, 0);
 uv_udp_recv_start(&recv_socket, alloc_buffer, on_read);

 uv_udp_init(loop, &send_socket);
 uv_udp_bind(&send_socket, uv_ip4_addr("0.0.0.0", 0), 0);
 uv_udp_set_broadcast(&send_socket, 1);

 uv_udp_send_t send_req;
 uv_buf_t discover_msg = make_discover_msg(&send_req);

 struct sockaddr_in send_addr = uv_ip4_addr("255.255.255.255", 67);
 uv_udp_send(&send_req, &send_socket, &discover_msg, 1, send_addr, on_send);

 return uv_run(loop, UV_RUN_DEFAULT);
}

Note

The IP address 0.0.0.0 is used to bind to all interfaces. The IP
address 255.255.255.255 is a broadcast address meaning that packets
will be sent to all interfaces on the subnet. port 0 means that the OS
randomly assigns a port.

First we setup the receiving socket to bind on all interfaces on port 68 (DHCP
client) and start a read watcher on it. Then we setup a similar send socket and
use uv_udp_send to send a broadcast message on port 67 (DHCP server).

It is necessary to set the broadcast flag, otherwise you will get an
EACCES error [1]. The exact message being sent is irrelevant to this book
and you can study the code if you are interested. As usual the read and write
callbacks will receive a status code of -1 if something went wrong.

Since UDP sockets are not connected to a particular peer, the read callback
receives an extra parameter about the sender of the packet. The flags
parameter may be UV_UDP_PARTIAL if the buffer provided by your allocator
was not large enough to hold the data. In this case the OS will discard the
data that could not fit (That’s UDP for you!).

udp-dhcp/main.c - Reading packets

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17

	void on_read(uv_udp_t *req, ssize_t nread, uv_buf_t buf, struct sockaddr *addr, unsigned flags) {
 if (nread == -1) {
 fprintf(stderr, "Read error %s\n", uv_err_name(uv_last_error(loop)));
 uv_close((uv_handle_t*) req, NULL);
 free(buf.base);
 return;
 }

 char sender[17] = { 0 };
 uv_ip4_name((struct sockaddr_in*) addr, sender, 16);
 fprintf(stderr, "Recv from %s\n", sender);

 // ... DHCP specific code

 free(buf.base);
 uv_udp_recv_stop(req);
}

UDP Options

Time-to-live

The TTL of packets sent on the socket can be changed using uv_udp_set_ttl.

IPv6 stack only

IPv6 sockets can be used for both IPv4 and IPv6 communication. If you want to
restrict the socket to IPv6 only, pass the UV_UDP_IPV6ONLY flag to
uv_udp_bind6 [2].

Multicast

A socket can (un)subscribe to a multicast group using:

UV_EXTERN int uv_udp_set_membership(uv_udp_t* handle,
 const char* multicast_addr, const char* interface_addr,
 uv_membership membership);

where membership is UV_JOIN_GROUP or UV_LEAVE_GROUP.

Local loopback of multicast packets is enabled by default [3], use
uv_udp_set_multicast_loop to switch it off.

The packet time-to-live for multicast packets can be changed using
uv_udp_set_multicast_ttl.

Querying DNS

libuv provides asynchronous DNS resolution. For this it provides its own
getaddrinfo replacement [4]. In the callback you can
perform normal socket operations on the retrieved addresses. Let’s connect to
Freenode to see an example of DNS resolution.

dns/main.c

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19

	int main() {
 loop = uv_default_loop();

 struct addrinfo hints;
 hints.ai_family = PF_INET;
 hints.ai_socktype = SOCK_STREAM;
 hints.ai_protocol = IPPROTO_TCP;
 hints.ai_flags = 0;

 uv_getaddrinfo_t resolver;
 fprintf(stderr, "irc.freenode.net is... ");
 int r = uv_getaddrinfo(loop, &resolver, on_resolved, "irc.freenode.net", "6667", &hints);

 if (r) {
 fprintf(stderr, "getaddrinfo call error %s\n", uv_err_name(uv_last_error(loop)));
 return 1;
 }
 return uv_run(loop, UV_RUN_DEFAULT);
}

If uv_getaddrinfo returns non-zero, something went wrong in the setup and
your callback won’t be invoked at all. All arguments can be freed immediately
after uv_getaddrinfo returns. The hostname, servname and hints
structures are documented in the getaddrinfo man page.

In the resolver callback, you can pick any IP from the linked list of struct
addrinfo(s). This also demonstrates uv_tcp_connect. It is necessary to
call uv_freeaddrinfo in the callback.

dns/main.c

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19

	void on_resolved(uv_getaddrinfo_t *resolver, int status, struct addrinfo *res) {
 if (status == -1) {
 fprintf(stderr, "getaddrinfo callback error %s\n", uv_err_name(uv_last_error(loop)));
 return;
 }

 char addr[17] = {'\0'};
 uv_ip4_name((struct sockaddr_in*) res->ai_addr, addr, 16);
 fprintf(stderr, "%s\n", addr);

 uv_connect_t *connect_req = (uv_connect_t*) malloc(sizeof(uv_connect_t));
 uv_tcp_t *socket = (uv_tcp_t*) malloc(sizeof(uv_tcp_t));
 uv_tcp_init(loop, socket);

 connect_req->data = (void*) socket;
 uv_tcp_connect(connect_req, socket, *(struct sockaddr_in*) res->ai_addr, on_connect);

 uv_freeaddrinfo(res);
}

Network interfaces

Information about the system’s network interfaces can be obtained through libuv
using uv_interface_addresses. This simple program just prints out all the
interface details so you get an idea of the fields that are available. This is
useful to allow your service to bind to IP addresses when it starts.

interfaces/main.c

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

	#include <stdio.h>
#include <uv.h>

int main() {
 char buf[512];
 uv_interface_address_t *info;
 int count, i;

 uv_interface_addresses(&info, &count);
 i = count;

 printf("Number of interfaces: %d\n", count);
 while (i--) {
 uv_interface_address_t interface = info[i];

 printf("Name: %s\n", interface.name);
 printf("Internal? %s\n", interface.is_internal ? "Yes" : "No");

 if (interface.address.address4.sin_family == AF_INET) {
 uv_ip4_name(&interface.address.address4, buf, sizeof(buf));
 printf("IPv4 address: %s\n", buf);
 }
 else if (interface.address.address4.sin_family == AF_INET6) {
 uv_ip6_name(&interface.address.address6, buf, sizeof(buf));
 printf("IPv6 address: %s\n", buf);
 }

 printf("\n");
 }

 uv_free_interface_addresses(info, count);
 return 0;
}

is_internal is true for loopback interfaces. Note that if a physical
interface has multiple IPv4/IPv6 addresses, the name will be reported multiple
times, with each address being reported once.

	[1]	http://beej.us/guide/bgnet/output/html/multipage/advanced.html#broadcast

	[2]	on Windows only supported on Windows Vista and later.

	[3]	http://www.tldp.org/HOWTO/Multicast-HOWTO-6.html#ss6.1

	[4]	libuv use the system getaddrinfo in the libuv threadpool. libuv
v0.8.0 and earlier also included c-ares [http://c-ares.haxx.se] as an alternative, but this has been
removed in v0.9.0.

 Copyright 2012, Nikhil Marathe.
 Created using Sphinx 1.1.3.

 Threads

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	An Introduction to libuv

Threads

Wait a minute? Why are we on threads? Aren’t event loops supposed to be the
way to do web-scale programming? Well no. Threads are still the medium in
which the processor does its job, and threads are mighty useful sometimes, even
though you might have to wade through synchronization primitives.

Threads are used internally to fake the asynchronous nature of all the system
calls. libuv also uses threads to allow you, the application, to perform a task
asynchronously that is actually blocking, by spawning a thread and collecting
the result when it is done.

Today there are two predominant thread libraries. The Windows threads
implementation and pthreads [http://man7.org/linux/man-pages/man7/pthreads.7.html]. libuv’s thread API is analogous to
the pthread API and often has similar semantics.

A notable aspect of libuv’s thread facilities is that it is a self contained
section within libuv. Whereas other features intimately depend on the event
loop and callback principles, threads are complete agnostic, they block as
required, signal errors directly via return values and, as shown in the
first example, don’t even require a running
event loop.

libuv’s thread API is also very limited since the semantics and syntax of
threads are different on all platforms, with different levels of completeness.

This chapter makes the following assumption: There is only one event loop,
running in one thread (the main thread). No other thread interacts
with the event loop (except using uv_async_send). Multiple event loops covers
running event loops in different threads and managing them.

Core thread operations

There isn’t much here, you just start a thread using uv_thread_create() and
wait for it to close using uv_thread_join().

thread-create/main.c

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

	int main() {
 int tracklen = 10;
 uv_thread_t hare_id;
 uv_thread_t tortoise_id;
 uv_thread_create(&hare_id, hare, &tracklen);
 uv_thread_create(&tortoise_id, tortoise, &tracklen);

 uv_thread_join(&hare_id);
 uv_thread_join(&tortoise_id);
 return 0;
}

Tip

uv_thread_t is just an alias for pthread_t on Unix, but this is an
implementation detail, avoid depending on it to always be true.

The second parameter is the function which will serve as the entry point for
the thread, the last parameter is a void * argument which can be used to pass
custom parameters to the thread. The function hare will now run in a separate
thread, scheduled pre-emptively by the operating system:

thread-create/main.c

	1
2
3
4
5
6
7
8
9

	void hare(void *arg) {
 int tracklen = *((int *) arg);
 while (tracklen) {
 tracklen--;
 sleep(1);
 fprintf(stderr, "Hare ran another step\n");
 }
 fprintf(stderr, "Hare done running!\n");
}

Unlike pthread_join() which allows the target thread to pass back a value to
the calling thread using a second parameter, uv_thread_join() does not. To
send values use Inter-thread communication.

Synchronization Primitives

This section is purposely spartan. This book is not about threads, so I only
catalogue any surprises in the libuv APIs here. For the rest you can look at
the pthreads man pages.

Mutexes

The mutex functions are a direct map to the pthread equivalents.

libuv mutex functions

UV_EXTERN int uv_mutex_init(uv_mutex_t* handle);
UV_EXTERN void uv_mutex_destroy(uv_mutex_t* handle);
UV_EXTERN void uv_mutex_lock(uv_mutex_t* handle);
UV_EXTERN int uv_mutex_trylock(uv_mutex_t* handle);
UV_EXTERN void uv_mutex_unlock(uv_mutex_t* handle);

The uv_mutex_init() and uv_mutex_trylock() functions will return 0 on
success, -1 on error instead of error codes.

If libuv has been compiled with debugging enabled, uv_mutex_destroy(),
uv_mutex_lock() and uv_mutex_unlock() will abort() on error.
Similarly uv_mutex_trylock() will abort if the error is anything other
than EAGAIN.

Recursive mutexes are supported by some platforms, but you should not rely on
them. The BSD mutex implementation will raise an error if a thread which has
locked a mutex attempts to lock it again. For example, a construct like:

uv_mutex_lock(a_mutex);
uv_thread_create(thread_id, entry, (void *)a_mutex);
uv_mutex_lock(a_mutex);
// more things here

can be used to wait until another thread initializes some stuff and then
unlocks a_mutex but will lead to your program crashing if in debug mode, or
return an error in the second call to uv_mutex_lock().

Note

Mutexes on linux support attributes for a recursive mutex, but the API is
not exposed via libuv.

Locks

Read-write locks are a more granular access mechanism. Two readers can access
shared memory at the same time. A writer may not acquire the lock when it is
held by a reader. A reader or writer may not acquire a lock when a writer is
holding it. Read-write locks are frequently used in databases. Here is a toy
example.

locks/main.c - simple rwlocks

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

	#include <stdio.h>
#include <uv.h>

uv_barrier_t blocker;
uv_rwlock_t numlock;
int shared_num;

void reader(void *n)
{
 int num = *(int *)n;
 int i;
 for (i = 0; i < 20; i++) {
 uv_rwlock_rdlock(&numlock);
 printf("Reader %d: acquired lock\n", num);
 printf("Reader %d: shared num = %d\n", num, shared_num);
 uv_rwlock_rdunlock(&numlock);
 printf("Reader %d: released lock\n", num);
 }
 uv_barrier_wait(&blocker);
}

void writer(void *n)
{
 int num = *(int *)n;
 int i;
 for (i = 0; i < 20; i++) {
 uv_rwlock_wrlock(&numlock);
 printf("Writer %d: acquired lock\n", num);
 shared_num++;
 printf("Writer %d: incremented shared num = %d\n", num, shared_num);
 uv_rwlock_wrunlock(&numlock);
 printf("Writer %d: released lock\n", num);
 }
 uv_barrier_wait(&blocker);
}

int main()
{
 uv_barrier_init(&blocker, 4);

 shared_num = 0;
 uv_rwlock_init(&numlock);

 uv_thread_t threads[3];

 int thread_nums[] = {1, 2, 1};
 uv_thread_create(&threads[0], reader, &thread_nums[0]);
 uv_thread_create(&threads[1], reader, &thread_nums[1]);

 uv_thread_create(&threads[2], writer, &thread_nums[2]);

 uv_barrier_wait(&blocker);
 uv_barrier_destroy(&blocker);

 uv_rwlock_destroy(&numlock);
 return 0;
}

Run this and observe how the readers will sometimes overlap. In case of
multiple writers, schedulers will usually give them higher priority, so if you
add two writers, you’ll see that both writers tend to finish first before the
readers get a chance again.

Others

libuv also supports semaphores [http://en.wikipedia.org/wiki/Semaphore_(programming)], condition variables [http://en.wikipedia.org/wiki/Condition_variable#Waiting_and_signaling] and barriers [http://en.wikipedia.org/wiki/Barrier_(computer_science)] with APIs
very similar to their pthread counterparts.

In the case of condition variables, libuv also has a timeout on a wait, with
platform specific quirks [1].

In addition, libuv provides a convenience function uv_once() (not to be
confused with uv_run_once(). Multiple threads can attempt to call
uv_once() with a given guard and a function pointer, only the first one
will win, the function will be called once and only once:

/* Initialize guard */
static uv_once_t once_only = UV_ONCE_INIT;

int i = 0;

void increment() {
 i++;
}

void thread1() {
 /* ... work */
 uv_once(once_only, increment);
}

void thread2() {
 /* ... work */
 uv_once(once_only, increment);
}

int main() {
 /* ... spawn threads */
}

After all threads are done, i == 1.

libuv work queue

uv_queue_work() is a convenience function that allows an application to run
a task in a separate thread, and have a callback that is triggered when the
task is done. A seemingly simple function, what makes uv_queue_work()
tempting is that it allows potentially any third-party libraries to be used
with the event-loop paradigm. When you use event loops, it is imperative to
make sure that no function which runs periodically in the loop thread blocks
when performing I/O or is a serious CPU hog, because this means the loop slows
down and events are not being dealt with at full capacity.

But a lot of existing code out there features blocking functions (for example
a routine which performs I/O under the hood) to be used with threads if you
want responsiveness (the classic ‘one thread per client’ server model), and
getting them to play with an event loop library generally involves rolling your
own system of running the task in a separate thread. libuv just provides
a convenient abstraction for this.

Here is a simple example inspired by node.js is cancer [https://raw.github.com/teddziuba/teddziuba.github.com/master/_posts/2011-10-01-node-js-is-cancer.html]. We are going to
calculate fibonacci numbers, sleeping a bit along the way, but run it in
a separate thread so that the blocking and CPU bound task does not prevent the
event loop from performing other activities.

queue-work/main.c - lazy fibonacci

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

	void fib(uv_work_t *req) {
 int n = *(int *) req->data;
 if (random() % 2)
 sleep(1);
 else
 sleep(3);
 long fib = fib_(n);
 fprintf(stderr, "%dth fibonacci is %lu\n", n, fib);
}

void after_fib(uv_work_t *req, int status) {
 fprintf(stderr, "Done calculating %dth fibonacci\n", *(int *) req->data);
}

The actual task function is simple, nothing to show that it is going to be
run in a separate thread. The uv_work_t structure is the clue. You can pass
arbitrary data through it using the void* data field and use it to
communicate to and from the thread. But be sure you are using proper locks if
you are changing things while both threads may be running.

The trigger is uv_queue_work:

queue-work/main.c

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

	int main() {
 loop = uv_default_loop();

 int data[FIB_UNTIL];
 uv_work_t req[FIB_UNTIL];
 int i;
 for (i = 0; i < FIB_UNTIL; i++) {
 data[i] = i;
 req[i].data = (void *) &data[i];
 uv_queue_work(loop, &req[i], fib, after_fib);
 }

 return uv_run(loop, UV_RUN_DEFAULT);
}

The thread function will be launched in a separate thread, passed the
uv_work_t structure and once the function returns, the after function
will be called, again with the same structure.

For writing wrappers to blocking libraries, a common pattern
is to use a baton to exchange data.

Inter-thread communication

Sometimes you want various threads to actually send each other messages while
they are running. For example you might be running some long duration task in
a separate thread (perhaps using uv_queue_work) but want to notify progress
to the main thread. This is a simple example of having a download manager
informing the user of the status of running downloads.

progress/main.c

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

	uv_loop_t *loop;
uv_async_t async;

int main() {
 loop = uv_default_loop();

 uv_work_t req;
 int size = 10240;
 req.data = (void*) &size;

 uv_async_init(loop, &async, print_progress);
 uv_queue_work(loop, &req, fake_download, after);

 return uv_run(loop, UV_RUN_DEFAULT);
}

The async thread communication works on loops so although any thread can be
the message sender, only threads with libuv loops can be receivers (or rather
the loop is the receiver). libuv will invoke the callback (print_progress)
with the async watcher whenever it receives a message.

Warning

It is important to realize that the message send is async, the callback
may be invoked immediately after uv_async_send is called in another
thread, or it may be invoked after some time. libuv may also combine
multiple calls to uv_async_send and invoke your callback only once. The
only guarantee that libuv makes is – The callback function is called at
least once after the call to uv_async_send. If you have no pending
calls to uv_async_send, the callback won’t be called. If you make two
or more calls, and libuv hasn’t had a chance to run the callback yet, it
may invoke your callback only once for the multiple invocations of
uv_async_send. Your callback will never be called twice for just one
event.

progress/main.c

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

	void fake_download(uv_work_t *req) {
 int size = *((int*) req->data);
 int downloaded = 0;
 double percentage;
 while (downloaded < size) {
 percentage = downloaded*100.0/size;
 async.data = (void*) &percentage;
 uv_async_send(&async);

 sleep(1);
 downloaded += (200+random())%1000; // can only download max 1000bytes/sec,
 // but at least a 200;
 }
}

In the download function we modify the progress indicator and queue the message
for delivery with uv_async_send. Remember: uv_async_send is also
non-blocking and will return immediately.

progress/main.c

	1
2
3
4

	void print_progress(uv_async_t *handle, int status /*UNUSED*/) {
 double percentage = *((double*) handle->data);
 fprintf(stderr, "Downloaded %.2f%%\n", percentage);
}

The callback is a standard libuv pattern, extracting the data from the watcher.

Finally it is important to remember to clean up the watcher.

progress/main.c

	1
2
3
4

	void after(uv_work_t *req, int status) {
 fprintf(stderr, "Download complete\n");
 uv_close((uv_handle_t*) &async, NULL);
}

After this example, which showed the abuse of the data field, bnoordhuis [https://github.com/bnoordhuis]
pointed out that using the data field is not thread safe, and
uv_async_send() is actually only meant to wake up the event loop. Use
a mutex or rwlock to ensure accesses are performed in the right order.

Warning

mutexes and rwlocks DO NOT work inside a signal handler, whereas
uv_async_send does.

One use case where uv_async_send is required is when interoperating with
libraries that require thread affinity for their functionality. For example in
node.js, a v8 engine instance, contexts and its objects are bound to the thread
that the v8 instance was started in. Interacting with v8 data structures from
another thread can lead to undefined results. Now consider some node.js module
which binds a third party library. It may go something like this:

	In node, the third party library is set up with a JavaScript callback to be
invoked for more information:

var lib = require('lib');
lib.on_progress(function() {
 console.log("Progress");
});

lib.do();

// do other stuff

	lib.do is supposed to be non-blocking but the third party lib is
blocking, so the binding uses uv_queue_work.

	The actual work being done in a separate thread wants to invoke the progress
callback, but cannot directly call into v8 to interact with JavaScript. So
it uses uv_async_send.

	The async callback, invoked in the main loop thread, which is the v8 thread,
then interacts with v8 to invoke the JavaScript callback.

	[1]	https://github.com/joyent/libuv/blob/master/include/uv.h#L1853

 Copyright 2012, Nikhil Marathe.
 Created using Sphinx 1.1.3.

 Processes

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	An Introduction to libuv

Processes

libuv offers considerable child process management, abstracting the platform
differences and allowing communication with the child process using streams or
named pipes.

A common idiom in Unix is for every process to do one thing and do it well. In
such a case, a process often uses multiple child processes to achieve tasks
(similar to using pipes in shells). A multi-process model with messages
may also be easier to reason about compared to one with threads and shared
memory.

A common refrain against event-based programs is that they cannot take
advantage of multiple cores in modern computers. In a multi-threaded program
the kernel can perform scheduling and assign different threads to different
cores, improving performance. But an event loop has only one thread. The
workaround can be to launch multiple processes instead, with each process
running an event loop, and each process getting assigned to a separate CPU
core.

Spawning child processes

The simplest case is when you simply want to launch a process and know when it
exits. This is achieved using uv_spawn.

spawn/main.c

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

	uv_loop_t *loop;
uv_process_t child_req;
uv_process_options_t options;

int main() {
 loop = uv_default_loop();

 char* args[3];
 args[0] = "mkdir";
 args[1] = "test-dir";
 args[2] = NULL;

 options.exit_cb = on_exit;
 options.file = "mkdir";
 options.args = args;

 if (uv_spawn(loop, &child_req, options)) {
 fprintf(stderr, "%s\n", uv_strerror(uv_last_error(loop)));
 return 1;
 }

 return uv_run(loop, UV_RUN_DEFAULT);
}

The uv_process_t struct only acts as the watcher, all options are set via
uv_process_options_t. To simply launch a process, you need to set only the
file and args fields. file is the program to execute. Since
uv_spawn uses execvp [http://www.kernel.org/doc/man-pages/online/pages/man3/exec.3.html] internally, there is no need to supply the full
path. Finally as per underlying conventions, the arguments array has to be
one larger than the number of arguments, with the last element being NULL.

After the call to uv_spawn, uv_process_t.pid will contain the process
ID of the child process.

The exit callback will be invoked with the exit status and the type of signal
which caused the exit.

spawn/main.c

	1
2
3
4

	void on_exit(uv_process_t *req, int exit_status, int term_signal) {
 fprintf(stderr, "Process exited with status %d, signal %d\n", exit_status, term_signal);
 uv_close((uv_handle_t*) req, NULL);
}

It is required to close the process watcher after the process exits.

Changing process parameters

Before the child process is launched you can control the execution environment
using fields in uv_process_options_t.

Change execution directory

Set uv_process_options_t.cwd to the corresponding directory.

Set environment variables

uv_process_options_t.env is an array of strings, each of the form
VAR=VALUE used to set up the environment variables for the process. Set
this to NULL to inherit the environment from the parent (this) process.

Option flags

Setting uv_process_options_t.flags to a bitwise OR of the following flags,
modifies the child process behaviour:

	UV_PROCESS_SETUID - sets the child’s execution user ID to uv_process_options_t.uid.

	UV_PROCESS_SETGID - sets the child’s execution group ID to uv_process_options_t.gid.

Changing the UID/GID is only supported on Unix, uv_spawn will fail on
Windows with UV_ENOTSUP.

	UV_PROCESS_WINDOWS_VERBATIM_ARGUMENTS - No quoting or escaping of
uv_process_options_t.args is done on Windows. Ignored on Unix.

	UV_PROCESS_DETACHED - Starts the child process in a new session, which
will keep running after the parent process exits. See example below.

Detaching processes

Passing the flag UV_PROCESS_DETACHED can be used to launch daemons, or
child processes which are independent of the parent so that the parent exiting
does not affect it.

detach/main.c

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22

	int main() {
 loop = uv_default_loop();

 char* args[3];
 args[0] = "sleep";
 args[1] = "100";
 args[2] = NULL;

 options.exit_cb = NULL;
 options.file = "sleep";
 options.args = args;
 options.flags = UV_PROCESS_DETACHED;

 if (uv_spawn(loop, &child_req, options)) {
 fprintf(stderr, "%s\n", uv_strerror(uv_last_error(loop)));
 return 1;
 }
 fprintf(stderr, "Launched sleep with PID %d\n", child_req.pid);
 uv_unref((uv_handle_t*) &child_req);

 return uv_run(loop, UV_RUN_DEFAULT);
}

Just remember that the watcher is still monitoring the child, so your program
won’t exit. Use uv_unref() if you want to be more fire-and-forget.

Sending signals to processes

libuv wraps the standard kill(2) system call on Unix and implements one
with similar semantics on Windows, with one caveat: all of SIGTERM,
SIGINT and SIGKILL, lead to termination of the process. The signature
of uv_kill is:

uv_err_t uv_kill(int pid, int signum);

For processes started using libuv, you may use uv_process_kill instead,
which accepts the uv_process_t watcher as the first argument, rather than
the pid. In this case, remember to call uv_close on the watcher.

Signals

TODO: update based on https://github.com/joyent/libuv/issues/668

libuv provides wrappers around Unix signals with some Windows support [https://github.com/joyent/libuv/blob/node-v0.9.4/include/uv.h#L1659] as well.

To make signals ‘play nice’ with libuv, the API will deliver signals to all
handlers on all running event loops! Use uv_signal_init() to initialize
a handler and associate it with a loop. To listen for particular signals on
that handler, use uv_signal_start() with the handler function. Each handler
can only be associated with one signal number, with subsequent calls to
uv_signal_start() overwriting earlier associations. Use uv_signal_stop() to
stop watching. Here is a small example demonstrating the various possibilities:

signal/main.c

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

	#include <stdio.h>
#include <unistd.h>
#include <uv.h>

void signal_handler(uv_signal_t *handle, int signum)
{
 printf("Signal received: %d\n", signum);
 uv_signal_stop(handle);
}

// two signal handlers in one loop
void thread1_worker(void *userp)
{
 uv_loop_t *loop1 = uv_loop_new();

 uv_signal_t sig1a, sig1b;
 uv_signal_init(loop1, &sig1a);
 uv_signal_start(&sig1a, signal_handler, SIGUSR1);

 uv_signal_init(loop1, &sig1b);
 uv_signal_start(&sig1b, signal_handler, SIGUSR1);

 uv_run(loop1, UV_RUN_DEFAULT);
}

// two signal handlers, each in its own loop
void thread2_worker(void *userp)
{
 uv_loop_t *loop2 = uv_loop_new();
 uv_loop_t *loop3 = uv_loop_new();

 uv_signal_t sig2;
 uv_signal_init(loop2, &sig2);
 uv_signal_start(&sig2, signal_handler, SIGUSR1);

 uv_signal_t sig3;
 uv_signal_init(loop3, &sig3);
 uv_signal_start(&sig3, signal_handler, SIGUSR1);

 while (uv_run(loop2, UV_RUN_NOWAIT) || uv_run(loop3, UV_RUN_NOWAIT)) {
 }
}

int main()
{
 printf("PID %d\n", getpid());

 uv_thread_t thread1, thread2;

 uv_thread_create(&thread1, thread1_worker, 0);
 uv_thread_create(&thread2, thread2_worker, 0);

 uv_thread_join(&thread1);
 uv_thread_join(&thread2);
 return 0;
}

Send SIGUSR1 to the process, and you’ll find the handler being invoked
4 times, one for each uv_signal_t. The handler just stops each handle,
so that the program exits. This sort of dispatch to all handlers is very
useful. A server using multiple event loops could ensure that all data was
safely saved before termination, simply by every loop adding a watcher for
SIGINT.

Child Process I/O

A normal, newly spawned process has its own set of file descriptors, with 0,
1 and 2 being stdin, stdout and stderr respectively. Sometimes you
may want to share file descriptors with the child. For example, perhaps your
applications launches a sub-command and you want any errors to go in the log
file, but ignore stdout. For this you’d like to have stderr of the
child to be displayed. In this case, libuv supports inheriting file
descriptors. In this sample, we invoke the test program, which is:

proc-streams/test.c

#include <stdio.h>

int main()
{
 fprintf(stderr, "This is stderr\n");
 printf("This is stdout\n");
 return 0;
}

The actual program proc-streams runs this while inheriting only stderr.
The file descriptors of the child process are set using the stdio field in
uv_process_options_t. First set the stdio_count field to the number of
file descriptors being set. uv_process_options_t.stdio is an array of
uv_stdio_container_t, which is:

typedef struct uv_stdio_container_s {
 uv_stdio_flags flags;

 union {
 uv_stream_t* stream;
 int fd;
 } data;
} uv_stdio_container_t;

where flags can have several values. Use UV_IGNORE if it isn’t going to be
used. If the first three stdio fields are marked as UV_IGNORE they’ll
redirect to /dev/null.

Since we want to pass on an existing descriptor, we’ll use UV_INHERIT_FD.
Then we set the fd to stderr.

proc-streams/main.c

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

	int main() {
 loop = uv_default_loop();

 /* ... */

 options.stdio_count = 3;
 uv_stdio_container_t child_stdio[3];
 child_stdio[0].flags = UV_IGNORE;
 child_stdio[1].flags = UV_IGNORE;
 child_stdio[2].flags = UV_INHERIT_FD;
 child_stdio[2].data.fd = 2;
 options.stdio = child_stdio;

 options.exit_cb = on_exit;
 options.file = args[0];
 options.args = args;

 if (uv_spawn(loop, &child_req, options)) {
 fprintf(stderr, "%s\n", uv_strerror(uv_last_error(loop)));
 return 1;
 }

 return uv_run(loop, UV_RUN_DEFAULT);
}

If you run proc-stream you’ll see that only the line “This is stderr” will
be displayed. Try marking stdout as being inherited and see the output.

It is dead simple to apply this redirection to streams. By setting flags
to UV_INHERIT_STREAM and setting data.stream to the stream in the
parent process, the child process can treat that stream as standard I/O. This
can be used to implement something like CGI [http://en.wikipedia.org/wiki/Common_Gateway_Interface].

A sample CGI script/executable is:

cgi/tick.c

#include <stdio.h>
#include <unistd.h>

int main() {
 int i;
 for (i = 0; i < 10; i++) {
 printf("tick\n");
 fflush(stdout);
 sleep(1);
 }
 printf("BOOM!\n");
 return 0;
}

The CGI server combines the concepts from this chapter and Networking so
that every client is sent ten ticks after which that connection is closed.

cgi/main.c

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10

	void on_new_connection(uv_stream_t *server, int status) {
 uv_tcp_t *client = (uv_tcp_t*) malloc(sizeof(uv_tcp_t));
 uv_tcp_init(loop, client);
 if (uv_accept(server, (uv_stream_t*) client) == 0) {
 invoke_cgi_script(client);
 }
 else {
 uv_close((uv_handle_t*) client, NULL);
 }
}

Here we simply accept the TCP connection and pass on the socket (stream) to
invoke_cgi_script.

cgi/main.c

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22

	void invoke_cgi_script(uv_tcp_t *client) {

 /* ... finding the executable path and setting up arguments ... */

 options.stdio_count = 3;
 uv_stdio_container_t child_stdio[3];
 child_stdio[0].flags = UV_IGNORE;
 child_stdio[1].flags = UV_INHERIT_STREAM;
 child_stdio[1].data.stream = (uv_stream_t*) client;
 child_stdio[2].flags = UV_IGNORE;
 options.stdio = child_stdio;

 options.exit_cb = on_exit;
 options.file = args[0];
 options.args = args;

 child_req.data = (void*) client;
 if (uv_spawn(loop, &child_req, options)) {
 fprintf(stderr, "%s\n", uv_strerror(uv_last_error(loop)));
 return;
 }
}

The stdout of the CGI script is set to the socket so that whatever our tick
script prints, gets sent to the client. By using processes, we can offload the
read/write buffering to the operating system, so in terms of convenience this
is great. Just be warned that creating processes is a costly task.

Pipes

libuv’s uv_pipe_t structure is slightly confusing to Unix programmers,
because it immediately conjures up | and pipe(7) [http://www.kernel.org/doc/man-pages/online/pages/man7/pipe.7.html]. But uv_pipe_t is
not related to anonymous pipes, rather it has two uses:

	Stream API - It acts as the concrete implementation of the uv_stream_t
API for providing a FIFO, streaming interface to local file I/O. This is
performed using uv_pipe_open as covered in Buffers and Streams.
You could also use it for TCP/UDP, but there are already convenience functions
and structures for them.

	IPC mechanism - uv_pipe_t can be backed by a Unix Domain Socket [http://www.kernel.org/doc/man-pages/online/pages/man7/unix.7.html] or
Windows Named Pipe [http://msdn.microsoft.com/en-us/library/windows/desktop/aa365590(v=vs.85).aspx] to allow multiple processes to communicate. This is
discussed below.

Parent-child IPC

A parent and child can have one or two way communication over a pipe created by
settings uv_stdio_container_t.flags to a bit-wise combination of
UV_CREATE_PIPE and UV_READABLE_PIPE or UV_WRITABLE_PIPE. The
read/write flag is from the perspective of the child process.

Arbitrary process IPC

Since domain sockets [1] can have a well known name and a location in the
file-system they can be used for IPC between unrelated processes. The D-BUS [http://www.freedesktop.org/wiki/Software/dbus]
system used by open source desktop environments uses domain sockets for event
notification. Various applications can then react when a contact comes online
or new hardware is detected. The MySQL server also runs a domain socket on
which clients can interact with it.

When using domain sockets, a client-server pattern is usually followed with the
creator/owner of the socket acting as the server. After the initial setup,
messaging is no different from TCP, so we’ll re-use the echo server example.

pipe-echo-server/main.c

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18

	int main() {
 loop = uv_default_loop();

 uv_pipe_t server;
 uv_pipe_init(loop, &server, 0);

 signal(SIGINT, remove_sock);

 if (uv_pipe_bind(&server, "echo.sock")) {
 fprintf(stderr, "Bind error %s\n", uv_err_name(uv_last_error(loop)));
 return 1;
 }
 if (uv_listen((uv_stream_t*) &server, 128, on_new_connection)) {
 fprintf(stderr, "Listen error %s\n", uv_err_name(uv_last_error(loop)));
 return 2;
 }
 return uv_run(loop, UV_RUN_DEFAULT);
}

We name the socket echo.sock which means it will be created in the local
directory. This socket now behaves no different from TCP sockets as far as
the stream API is concerned. You can test this server using netcat [http://netcat.sf.net]:

$ nc -U /path/to/echo.sock

A client which wants to connect to a domain socket will use:

void uv_pipe_connect(uv_connect_t *req, uv_pipe_t *handle, const char *name, uv_connect_cb cb);

where name will be echo.sock or similar.

Sending file descriptors over pipes

The cool thing about domain sockets is that file descriptors can be exchanged
between processes by sending them over a domain socket. This allows processes
to hand off their I/O to other processes. Applications include load-balancing
servers, worker processes and other ways to make optimum use of CPU.

Warning

On Windows, only file descriptors representing TCP sockets can be passed
around.

To demonstrate, we will look at a echo server implementation that hands of
clients to worker processes in a round-robin fashion. This program is a bit
involved, and while only snippets are included in the book, it is recommended
to read the full code to really understand it.

The worker process is quite simple, since the file-descriptor is handed over to
it by the master.

multi-echo-server/worker.c

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

	uv_loop_t *loop;
uv_pipe_t queue;

int main() {
 loop = uv_default_loop();

 uv_pipe_init(loop, &queue, 1);
 uv_pipe_open(&queue, 0);
 uv_read2_start((uv_stream_t*)&queue, alloc_buffer, on_new_connection);
 return uv_run(loop, UV_RUN_DEFAULT);
}

queue is the pipe connected to the master process on the other end, along
which new file descriptors get sent. We use the read2 function to express
interest in file descriptors. It is important to set the ipc argument of
uv_pipe_init to 1 to indicate this pipe will be used for inter-process
communication! Since the master will write the file handle to the standard
input of the worker, we connect the pipe to stdin using uv_pipe_open.

multi-echo-server/worker.c

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16

	void on_new_connection(uv_pipe_t *q, ssize_t nread, uv_buf_t buf, uv_handle_type pending) {
 if (pending == UV_UNKNOWN_HANDLE) {
 // error!
 return;
 }

 uv_pipe_t *client = (uv_pipe_t*) malloc(sizeof(uv_pipe_t));
 uv_pipe_init(loop, client, 0);
 if (uv_accept((uv_stream_t*) q, (uv_stream_t*) client) == 0) {
 fprintf(stderr, "Worker %d: Accepted fd %d\n", getpid(), client->io_watcher.fd);
 uv_read_start((uv_stream_t*) client, alloc_buffer, echo_read);
 }
 else {
 uv_close((uv_handle_t*) client, NULL);
 }
}

Although accept seems odd in this code, it actually makes sense. What
accept traditionally does is get a file descriptor (the client) from
another file descriptor (The listening socket). Which is exactly what we do
here. Fetch the file descriptor (client) from queue. From this point
the worker does standard echo server stuff.

Turning now to the master, let’s take a look at how the workers are launched to
allow load balancing.

multi-echo-server/main.c

	1
2
3
4
5
6
7

	uv_loop_t *loop;

struct child_worker {
 uv_process_t req;
 uv_process_options_t options;
 uv_pipe_t pipe;
} *workers;

The child_worker structure wraps the process, and the pipe between the
master and the individual process.

multi-echo-server/main.c

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

	void setup_workers() {
 // ...

 // launch same number of workers as number of CPUs
 uv_cpu_info_t *info;
 int cpu_count;
 uv_cpu_info(&info, &cpu_count);
 uv_free_cpu_info(info, cpu_count);

 child_worker_count = cpu_count;

 workers = calloc(sizeof(struct child_worker), cpu_count);
 while (cpu_count--) {
 struct child_worker *worker = &workers[cpu_count];
 uv_pipe_init(loop, &worker->pipe, 1);

 uv_stdio_container_t child_stdio[3];
 child_stdio[0].flags = UV_CREATE_PIPE | UV_READABLE_PIPE;
 child_stdio[0].data.stream = (uv_stream_t*) &worker->pipe;
 child_stdio[1].flags = UV_IGNORE;
 child_stdio[2].flags = UV_INHERIT_FD;
 child_stdio[2].data.fd = 2;

 worker->options.stdio = child_stdio;
 worker->options.stdio_count = 3;

 worker->options.exit_cb = on_exit;
 worker->options.file = args[0];
 worker->options.args = args;

 uv_spawn(loop, &worker->req, worker->options);
 fprintf(stderr, "Started worker %d\n", worker->req.pid);
 }
}

In setting up the workers, we use the nifty libuv function uv_cpu_info to
get the number of CPUs so we can launch an equal number of workers. Again it is
important to initialize the pipe acting as the IPC channel with the third
argument as 1. We then indicate that the child process’ stdin is to be
a readable pipe (from the point of view of the child). Everything is
straightforward till here. The workers are launched and waiting for file
descriptors to be written to their pipes.

It is in on_new_connection (the TCP infrastructure is initialized in
main()), that we accept the client socket and pass it along to the next
worker in the round-robin.

multi-echo-server/main.c

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19

	void on_new_connection(uv_stream_t *server, int status) {
 if (status == -1) {
 // error!
 return;
 }

 uv_pipe_t *client = (uv_pipe_t*) malloc(sizeof(uv_pipe_t));
 uv_pipe_init(loop, client, 0);
 if (uv_accept(server, (uv_stream_t*) client) == 0) {
 uv_write_t *write_req = (uv_write_t*) malloc(sizeof(uv_write_t));
 dummy_buf = uv_buf_init(".", 1);
 struct child_worker *worker = &workers[round_robin_counter];
 uv_write2(write_req, (uv_stream_t*) &worker->pipe, &dummy_buf, 1, (uv_stream_t*) client, NULL);
 round_robin_counter = (round_robin_counter + 1) % child_worker_count;
 }
 else {
 uv_close((uv_handle_t*) client, NULL);
 }
}

Again, the uv_write2 call handles all the abstraction and it is simply
a matter of passing in the file descriptor as the right argument. With this our
multi-process echo server is operational.

TODO what do the write2/read2 functions do with the buffers?

	[1]	In this section domain sockets stands in for named pipes on Windows as
well.

 Copyright 2012, Nikhil Marathe.
 Created using Sphinx 1.1.3.

 Multiple event loops

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	An Introduction to libuv

Multiple event loops

It is possible to use multiple event loops in the same thread. But this usually
makes no sense since the uv_run() call of one loop will block and stop the
other loop from running at all. With a careful combination of uv_run_once()
you could do some really fun things though.

Modality

You can use multiple loops to create a ‘modal’ step in your program, where the
second event loop ‘pauses’ the first event loop until some action occurs (a
user presses Return or you get a new event or something). An

One loop per thread

This is the ‘standard model’, no different from spawning multiple processes
like we did in the Processes chapter.

Using two loops for synchronization

There is a very specific use-case where two event loops can be used as
a synchronization mechanism in place of conditional variables. I used it in
node-taglib [https://github.com/nikhilm/node-taglib]. libuv did not have
condition variable support then, and I’ve kept it that way for now to allow
it to work with earlier node versions. The specific use case is:

	The main thread calls a blocking function in a worker thread using
uv_queue_work().

	The worker thread has to call a custom function. The catch is that the
custom function has to run on the main thread.

	The worker thread has to wait until this function returns.

The condition variable approach is:

	The worker thread doesn’t directly call the custom function. It instead
creates a uv_async_t handler. The callback for this handler calls the
custom function.

	Initializes a condition variable.

	It uses uv_async_send() to get the main thread (where the event loop runs)
to invoke the function on its behalf.

	Waits on the condition variable.

	The callback calls the custom function, then signals the condition variable
which lets the worker thread continue.

The event loop implementation instead:

	Creates a new event loop in the worker thread.

	Associates a uv_async_t with this new loop.

	Passes this handler to the main thread through the original uv_async_t
handler’s data field.

	uv_run() the new event loop, which now blocks because the async handler
has incremented it’s refcount.

	The callback in the main thread calls the custom function, then uses
uv_async_send() to signal the async handler on the new loop.

	The callback for this async handler simply closes the handler itself, the
new loop’s refcount drops to zero, uv_run() returns and the worker thread
can continue.

 Copyright 2012, Nikhil Marathe.
 Created using Sphinx 1.1.3.

 Utilities

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	An Introduction to libuv

Utilities

This chapter catalogues tools and techniques which are useful for common tasks.
The libev man page [http://pod.tst.eu/http://cvs.schmorp.de/libev/ev.pod#COMMON_OR_USEFUL_IDIOMS_OR_BOTH] already covers some patterns which can be adopted to
libuv through simple API changes. It also covers parts of the libuv API that
don’t require entire chapters dedicated to them.

Timers

Timers invoke the callback after a certain time has elapsed since the timer was
started. libuv timers can also be set to invoke at regular intervals instead of
just once.

Simple use is to init a watcher and start it with a timeout, and optional repeat.
Timers can be stopped at any time.

uv_timer_t timer_req;

uv_timer_init(loop, &timer_req);
uv_timer_start(&timer_req, callback, 5000, 2000);

will start a repeating timer, which first starts 5 seconds (the timeout) after the execution
of uv_timer_start, then repeats every 2 seconds (the repeat). Use:

uv_timer_stop(&timer_req);

to stop the timer. This can be used safely from within the callback as well.

The repeat interval can be modified at any time with:

uv_timer_set_repeat(uv_timer_t *timer, int64_t repeat);

which will take effect when possible. If this function is called from
a timer callback, it means:

	If the timer was non-repeating, the timer has already been stopped. Use
uv_timer_start again.

	If the timer is repeating, the next timeout has already been scheduled, so
the old repeat interval will be used once more before the timer switches to
the new interval.

The utility function:

int uv_timer_again(uv_timer_t *)

applies only to repeating timers and is equivalent to stopping the timer
and then starting it with both initial timeout and repeat set to the
old repeat value. If the timer hasn’t been started it fails (error code
UV_EINVAL) and returns -1.

An actual timer example is in the reference count section.

Event loop reference count

The event loop only runs as long as there are active watchers. This system
works by having every watcher increase the reference count of the event loop
when it is started and decreasing the reference count when stopped. It is also
possible to manually change the reference count of handles using:

void uv_ref(uv_handle_t*);
void uv_unref(uv_handle_t*);

These functions can be used to allow a loop to exit even when a watcher is
active or to use custom objects to keep the loop alive.

The former can be used with interval timers. You might have a garbage collector
which runs every X seconds, or your network service might send a heartbeat to
others periodically, but you don’t want to have to stop them along all clean
exit paths or error scenarios. Or you want the program to exit when all your
other watchers are done. In that case just unref the timer immediately after
creation so that if it is the only watcher running then uv_run will still
exit.

The later is used in node.js where some libuv methods are being bubbled up to
the JS API. A uv_handle_t (the superclass of all watchers) is created per
JS object and can be ref/unrefed.

ref-timer/main.c

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17

	uv_loop_t *loop;
uv_timer_t gc_req;
uv_timer_t fake_job_req;

int main() {
 loop = uv_default_loop();

 uv_timer_init(loop, &gc_req);
 uv_unref((uv_handle_t*) &gc_req);

 uv_timer_start(&gc_req, gc, 0, 2000);

 // could actually be a TCP download or something
 uv_timer_init(loop, &fake_job_req);
 uv_timer_start(&fake_job_req, fake_job, 9000, 0);
 return uv_run(loop, UV_RUN_DEFAULT);
}

We initialize the garbage collector timer, then immediately unref it.
Observe how after 9 seconds, when the fake job is done, the program
automatically exits, even though the garbage collector is still running.

Idle watcher pattern

The callbacks of idle watchers are only invoked when the event loop has no
other pending events. In such a situation they are invoked once every iteration
of the loop. The idle callback can be used to perform some very low priority
activity. For example, you could dispatch a summary of the daily application
performance to the developers for analysis during periods of idleness, or use
the application’s CPU time to perform SETI calculations :) An idle watcher is
also useful in a GUI application. Say you are using an event loop for a file
download. If the TCP socket is still being established and no other events are
present your event loop will pause (block), which means your progress bar
will freeze and the user will think the application crashed. In such a case
queue up and idle watcher to keep the UI operational.

idle-compute/main.c

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

	uv_loop_t *loop;
uv_fs_t stdin_watcher;
uv_idle_t idler;
char buffer[1024];

int main() {
 loop = uv_default_loop();

 uv_idle_init(loop, &idler);

 uv_fs_read(loop, &stdin_watcher, 1, buffer, 1024, -1, on_type);
 uv_idle_start(&idler, crunch_away);
 return uv_run(loop, UV_RUN_DEFAULT);
}

Here we initialize the idle watcher and queue it up along with the actual
events we are interested in. crunch_away will now be called repeatedly
until the user types something and presses Return. Then it will be interrupted
for a brief amount as the loop deals with the input data, after which it will
keep calling the idle callback again.

idle-compute/main.c

	1
2
3
4
5
6
7
8
9

	void crunch_away(uv_idle_t* handle, int status) {
 // Compute extra-terrestrial life
 // fold proteins
 // computer another digit of PI
 // or similar
 fprintf(stderr, "Computing PI...\n");
 // just to avoid overwhelming your terminal emulator
 uv_idle_stop(handle);
}

Passing data to worker thread

When using uv_queue_work you’ll usually need to pass complex data through
to the worker thread. The solution is to use a struct and set
uv_work_t.data to point to it. A slight variation is to have the
uv_work_t itself as the first member of this struct (called a baton [1]).
This allows cleaning up the work request and all the data in one free call.

	1
2
3
4
5
6
7

	struct ftp_baton {
 uv_work_t req;
 char *host;
 int port;
 char *username;
 char *password;
}

	1
2
3
4
5
6
7

	ftp_baton *baton = (ftp_baton*) malloc(sizeof(ftp_baton));
baton->req.data = (void*) baton;
baton->host = strdup("my.webhost.com");
baton->port = 21;
// ...

uv_queue_work(loop, &baton->req, ftp_session, ftp_cleanup);

Here we create the baton and queue the task.

Now the task function can extract the data it needs:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

	void ftp_session(uv_work_t *req) {
 ftp_baton *baton = (ftp_baton*) req->data;

 fprintf(stderr, "Connecting to %s\n", baton->host);
}

void ftp_cleanup(uv_work_t *req) {
 ftp_baton *baton = (ftp_baton*) req->data;

 free(baton->host);
 // ...
 free(baton);
}

We then free the baton which also frees the watcher.

External I/O with polling

Usually third-party libraries will handle their own I/O, and keep track of
their sockets and other files internally. In this case it isn’t possible to use
the standard stream I/O operations, but the library can still be integrated
into the libuv event loop. All that is required is that the library allow you
to access the underlying file descriptors and provide functions that process
tasks in small increments as decided by your application. Some libraries though
will not allow such access, providing only a standard blocking function which
will perform the entire I/O transaction and only then return. It is unwise to
use these in the event loop thread, use the libuv work queue instead. Of
course this will also mean losing granular control on the library.

The uv_poll section of libuv simply watches file descriptors using the
operating system notification mechanism. In some sense, all the I/O operations
that libuv implements itself are also backed by uv_poll like code. Whenever
the OS notices a change of state in file descriptors being polled, libuv will
invoke the associated callback.

Here we will walk through a simple download manager that will use libcurl [http://curl.haxx.se/libcurl/] to
download files. Rather than give all control to libcurl, we’ll instead be
using the libuv event loop, and use the non-blocking, async multi [http://curl.haxx.se/libcurl/c/libcurl-multi.html] interface to
progress with the download whenever libuv notifies of I/O readiness.

uvwget/main.c - The setup

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

	#include <stdio.h>
#include <stdlib.h>
#include <sys/select.h>
#include <uv.h>
#include <curl/curl.h>

uv_loop_t *loop;
CURLM *curl_handle;
uv_timer_t timeout;

int main(int argc, char **argv) {
 loop = uv_default_loop();

 if (argc <= 1)
 return 0;

 if (curl_global_init(CURL_GLOBAL_ALL)) {
 fprintf(stderr, "Could not init cURL\n");
 return 1;
 }

 uv_timer_init(loop, &timeout);

 curl_handle = curl_multi_init();
 curl_multi_setopt(curl_handle, CURLMOPT_SOCKETFUNCTION, handle_socket);
 curl_multi_setopt(curl_handle, CURLMOPT_TIMERFUNCTION, start_timeout);

 while (argc-- > 1) {
 add_download(argv[argc], argc);
 }

 uv_run(loop, UV_RUN_DEFAULT);
 curl_multi_cleanup(curl_handle);
 return 0;
}

The way each library is integrated with libuv will vary. In the case of
libcurl, we can register two callbacks. The socket callback handle_socket
is invoked whenever the state of a socket changes and we have to start polling
it. start_timeout is called by libcurl to notify us of the next timeout
interval, after which we should drive libcurl forward regardless of I/O status.
This is so that libcurl can handle errors or do whatever else is required to
get the download moving.

Our downloader is to be invoked as:

$./uvwget [url1] [url2] ...

So we add each argument as an URL

uvwget/main.c - Adding urls

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17

	void add_download(const char *url, int num) {
 char filename[50];
 sprintf(filename, "%d.download", num);
 FILE *file;

 file = fopen(filename, "w");
 if (file == NULL) {
 fprintf(stderr, "Error opening %s\n", filename);
 return;
 }

 CURL *handle = curl_easy_init();
 curl_easy_setopt(handle, CURLOPT_WRITEDATA, file);
 curl_easy_setopt(handle, CURLOPT_URL, url);
 curl_multi_add_handle(curl_handle, handle);
 fprintf(stderr, "Added download %s -> %s\n", url, filename);
}

We let libcurl directly write the data to a file, but much more is possible if
you so desire.

start_timeout will be called immediately the first time by libcurl, so
things are set in motion. This simply starts a libuv timer which
drives curl_multi_socket_action with CURL_SOCKET_TIMEOUT whenever it
times out. curl_multi_socket_action is what drives libcurl, and what we
call whenever sockets change state. But before we go into that, we need to poll
on sockets whenever handle_socket is called.

uvwget/main.c - Setting up polling

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

	int handle_socket(CURL *easy, curl_socket_t s, int action, void *userp, void *socketp) {
 uv_poll_t *poll_fd;
 if (action == CURL_POLL_IN || action == CURL_POLL_OUT) {
 if (socketp) {
 poll_fd = (uv_poll_t*) socketp;
 }
 else {
 poll_fd = (uv_poll_t*) malloc(sizeof(uv_poll_t));
 uv_poll_init(loop, poll_fd, s);
 }
 curl_multi_assign(curl_handle, s, (void *) poll_fd);
 }

 switch (action) {
 case CURL_POLL_IN:
 uv_poll_start(poll_fd, UV_READABLE, curl_perform);
 break;
 case CURL_POLL_OUT:
 uv_poll_start(poll_fd, UV_WRITABLE, curl_perform);
 break;
 case CURL_POLL_REMOVE:
 if (socketp) {
 uv_poll_stop((uv_poll_t*) socketp);
 uv_close((uv_handle_t*) socketp, (uv_close_cb) free);
 curl_multi_assign(curl_handle, s, NULL);
 }
 break;
 default:
 abort();
 }

 return 0;
}

We are interested in the socket fd s, and the action. For every socket
we create a uv_poll_t handle if it doesn’t exist, and associate it with the
socket using curl_multi_assign. This way socketp points to it whenever
the callback is invoked.

In the case that the download is done or fails, libcurl requests removal of the
poll. So we stop and free the poll handle.

Depending on what events libcurl wishes to watch for, we start polling with
UV_READABLE or UV_WRITABLE. Now libuv will invoke the poll callback
whenever the socket is ready for reading or writing. Calling uv_poll_start
multiple times on the same handle is acceptable, it will just update the events
mask with the new value. curl_perform is the crux of this program.

uvwget/main.c - Setting up polling

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

	void curl_perform(uv_poll_t *req, int status, int events) {
 uv_timer_stop(&timeout);
 int running_handles;
 int flags = 0;
 if (events & UV_READABLE) flags |= CURL_CSELECT_IN;
 if (events & UV_WRITABLE) flags |= CURL_CSELECT_OUT;

 curl_multi_socket_action(curl_handle, req->io_watcher.fd, flags, &running_handles);

 char *done_url;

 CURLMsg *message;
 int pending;
 while ((message = curl_multi_info_read(curl_handle, &pending))) {
 switch (message->msg) {
 case CURLMSG_DONE:
 curl_easy_getinfo(message->easy_handle, CURLINFO_EFFECTIVE_URL, &done_url);
 printf("%s DONE\n", done_url);

 curl_multi_remove_handle(curl_handle, message->easy_handle);
 curl_easy_cleanup(message->easy_handle);

 break;
 default:
 fprintf(stderr, "CURLMSG default\n");
 abort();
 }
 }
}

The first thing we do is to stop the timer, since there has been some progress
in the interval. Then depending on what event triggered the callback, we inform
libcurl of the same. Then we call curl_multi_socket_action with the socket
that progressed and the flags informing about what events happened. At this
point libcurl does all of its internal tasks in small increments, and will
attempt to return as fast as possible, which is exactly what an evented program
wants in its main thread. libcurl keeps queueing messages into its own queue
about transfer progress. In our case we are only interested in transfers that
are completed. So we extract these messages, and clean up handles whose
transfers are done.

Check & Prepare watchers

TODO

Loading libraries

libuv provides a cross platform API to dynamically load shared libraries [http://en.wikipedia.org/wiki/Shared_library#Shared_libraries].
This can be used to implement your own plugin/extension/module system and is
used by node.js to implement require() support for bindings. The usage is
quite simple as long as your library exports the right symbols. Be careful with
sanity and security checks when loading third party code, otherwise your
program will behave unpredicatably. This example implements a very simple
plugin system which does nothing except print the name of the plugin.

Let us first look at the interface provided to plugin authors.

plugin/plugin.h

	1
2
3
4
5
6

	#ifndef UVBOOK_PLUGIN_SYSTEM
#define UVBOOK_PLUGIN_SYSTEM

void mfp_register(const char *name);

#endif

plugin/plugin.c

	1
2
3
4
5

	#include <stdio.h>

void mfp_register(const char *name) {
 fprintf(stderr, "Registered plugin \"%s\"\n", name);
}

You can similarly add more functions that plugin authors can use to do useful
things in your application [2]. A sample plugin using this API is:

plugin/hello.c

	1
2
3
4
5

	#include "plugin.h"

void initialize() {
 mfp_register("Hello World!");
}

Our interface defines that all plugins should have an initialize function
which will be called by the application. This plugin is compiled as a shared
library and can be loaded by running our application:

$./plugin libhello.dylib
Loading libhello.dylib
Registered plugin "Hello World!"

This is done by using uv_dlopen to first load the shared library
libhello.dylib. Then we get access to the initialize function using
uv_dlsym and invoke it.

plugin/main.c

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

	#include "plugin.h"

typedef void (*init_plugin_function)();

int main(int argc, char **argv) {
 if (argc == 1) {
 fprintf(stderr, "Usage: %s [plugin1] [plugin2] ...\n", argv[0]);
 return 0;
 }

 uv_lib_t *lib = (uv_lib_t*) malloc(sizeof(uv_lib_t));
 while (--argc) {
 fprintf(stderr, "Loading %s\n", argv[argc]);
 if (uv_dlopen(argv[argc], lib)) {
 fprintf(stderr, "Error: %s\n", uv_dlerror(lib));
 continue;
 }

 init_plugin_function init_plugin;
 if (uv_dlsym(lib, "initialize", (void **) &init_plugin)) {
 fprintf(stderr, "dlsym error: %s\n", uv_dlerror(lib));
 continue;
 }

 init_plugin();
 }

 return 0;
}

uv_dlopen expects a path to the shared library and sets the opaque
uv_lib_t pointer. It returns 0 on success, -1 on error. Use uv_dlerror
to get the error message.

uv_dlsym stores a pointer to the symbol in the second argument in the third
argument. init_plugin_function is a function pointer to the sort of
function we are looking for in the application’s plugins.

TTY

Text terminals have supported basic formatting for a long time, with a pretty
standardised [http://en.wikipedia.org/wiki/ANSI_escape_sequences] command set. This formatting is often used by programs to
improve the readability of terminal output. For example grep --colour.
libuv provides the uv_tty_t abstraction (a stream) and related functions to
implement the ANSI escape codes across all platforms. By this I mean that libuv
converts ANSI codes to the Windows equivalent, and provides functions to get
terminal information.

The first thing to do is to initialize a uv_tty_t with the file descriptor
it reads/writes from. This is achieved with:

int uv_tty_init(uv_loop_t*, uv_tty_t*, uv_file fd, int readable)

If readable is false, uv_write calls to this stream will be
blocking.

It is then best to use uv_tty_set_mode to set the mode to normal (0)
which enables most TTY formatting, flow-control and other settings. raw mode
(1) is also supported.

Remember to call uv_tty_reset_mode when your program exits to restore the
state of the terminal. Just good manners. Another set of good manners is to be
aware of redirection. If the user redirects the output of your command to
a file, control sequences should not be written as they impede readability and
grep. To check if the file descriptor is indeed a TTY, call
uv_guess_handle with the file descriptor and compare the return value with
UV_TTY.

Here is a simple example which prints white text on a red background:

tty/main.c

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

	#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <uv.h>

uv_loop_t *loop;
uv_tty_t tty;
int main() {
 loop = uv_default_loop();

 uv_tty_init(loop, &tty, 1, 0);
 uv_tty_set_mode(&tty, 0);

 if (uv_guess_handle(1) == UV_TTY) {
 uv_write_t req;
 uv_buf_t buf;
 buf.base = "\033[41;37m";
 buf.len = strlen(buf.base);
 uv_write(&req, (uv_stream_t*) &tty, &buf, 1, NULL);
 }

 uv_write_t req;
 uv_buf_t buf;
 buf.base = "Hello TTY\n";
 buf.len = strlen(buf.base);
 uv_write(&req, (uv_stream_t*) &tty, &buf, 1, NULL);
 uv_tty_reset_mode();
 return uv_run(loop, UV_RUN_DEFAULT);
}

The final TTY helper is uv_tty_get_winsize() which is used to get the
width and height of the terminal and returns 0 on success. Here is a small
program which does some animation using the function and character position
escape codes.

tty-gravity/main.c

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

	#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <uv.h>

uv_loop_t *loop;
uv_tty_t tty;
uv_timer_t tick;
uv_write_t write_req;
int width, height;
int pos = 0;
char *message = " Hello TTY ";

void update(uv_timer_t *req, int status) {
 char data[500];

 uv_buf_t buf;
 buf.base = data;
 buf.len = sprintf(data, "\033[2J\033[H\033[%dB\033[%luC\033[42;37m%s",
 pos,
 (unsigned long) (width-strlen(message))/2,
 message);
 uv_write(&write_req, (uv_stream_t*) &tty, &buf, 1, NULL);

 pos++;
 if (pos > height) {
 uv_tty_reset_mode();
 uv_timer_stop(&tick);
 }
}

int main() {
 loop = uv_default_loop();

 uv_tty_init(loop, &tty, 1, 0);
 uv_tty_set_mode(&tty, 0);

 if (uv_tty_get_winsize(&tty, &width, &height)) {
 fprintf(stderr, "Could not get TTY information\n");
 uv_tty_reset_mode();
 return 1;
 }

 fprintf(stderr, "Width %d, height %d\n", width, height);
 uv_timer_init(loop, &tick);
 uv_timer_start(&tick, update, 200, 200);
 return uv_run(loop, UV_RUN_DEFAULT);
}

The escape codes are:

	Code
	Meaning

	2 J
	Clear part of the screen, 2 is entire screen

	H
	Moves cursor to certain position, default top-left

	n B
	Moves cursor down by n lines

	n C
	Moves cursor right by n columns

	m
	Obeys string of display settings, in this case green background (40+2), white text (30+7)

As you can see this is very useful to produce nicely formatted output, or even
console based arcade games if that tickles your fancy. For fancier control you
can try ncurses [http://www.gnu.org/software/ncurses/ncurses.html].

	[1]	mfp is My Fancy Plugin

	[2]	I was first introduced to the term baton in this context, in Konstantin
Käfer’s excellent slides on writing node.js bindings –
http://kkaefer.github.com/node-cpp-modules/#baton

 Copyright 2012, Nikhil Marathe.
 Created using Sphinx 1.1.3.

 About

 Navigation

 	
 index

 	
 previous |

 	An Introduction to libuv

